Arhgef7 promotes activation of the Hippo pathway core kinase Lats.

نویسندگان

  • Emad Heidary Arash
  • Ki Myung Song
  • Siyuan Song
  • Ahmed Shiban
  • Liliana Attisano
چکیده

The Hippo pathway regulates tissue growth and organ size, and inactivation contributes to cancer. Signals flow through Mst/Lats kinases, which phosphorylate and promote cytoplasmic localization of the transcriptional regulators Yap and Taz to inhibit transcription. Here, we identify the multidomain-containing guanine nucleotide exchange factor (GEF) Arhgef7, or βPix, as a positive Hippo pathway regulator. We show that βPix, which localizes to the cytoplasm, binds both Lats and Yap/Taz and thereby promotes Lats-mediated phosphorylation of Yap/Taz in a GEF-independent manner. βPix is required downstream of both cell density sensing and actin cytoskeletal rearrangements, and we demonstrate that loss of βPix expression in normal mammary epithelial cells strongly reduces Yap/Taz phosphorylation, promotes nuclear localization and increases target gene expression. Conversely, increased expression of βPIX in breast cancer cell lines re-couples the Hippo kinase cassette to Yap/Taz, promoting localization of Yap/Taz to the cytoplasm and inhibiting cell migration and proliferation. These studies thus define βPix as a key component that links the Hippo kinase cassette to Yap/Taz in response to multiple upstream Hippo pathway activators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling.

The Mst-Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conform...

متن کامل

SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRI...

متن کامل

PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo-YAP pathway

The Hippo pathway significantly correlates with organ size control and tumorigenesis. The activity of YAP/TAZ, a transducer of the Hippo pathway, is required to sustain self-renewal and tumor-initiation capacities in cancer stem cells (CSCs). But, upstream signals that control the mammalian Hippo pathway have not been well understood. Here, we reveal a connection between the Protease-activated ...

متن کامل

Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1.

The Hippo signaling pathway inhibits cell growth and regulates organ size through a kinase cascade that leads to the phosphorylation and nuclear exclusion of the growth-promoting transcriptional coactivator Yes-associated protein (YAP)/Yorkie. It mediates contact inhibition of cell growth downstream of cadherin adhesion molecules and other cell surface proteins. Contact inhibition is often anta...

متن کامل

Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway.

The core LATS kinases of the Hippo tumor suppressor pathway phosphorylate and inhibit the downstream transcriptional co-activators YAP and TAZ, which are implicated in various cancers. Recent studies have identified various E3 ubiquitin ligases that negatively regulate the Hippo pathway via ubiquitination, yet few deubiquitinating enzymes (DUB) have been implicated. In this study, we report the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 33 24  شماره 

صفحات  -

تاریخ انتشار 2014